關于高級氧(yang)化后廢(fei)水的可生化性問題
這是一個復雜的理論與實踐問題,但在實際處理工程中又不可回避。曾有一家國際著名水務企業科研機構,通過對各種工業廢水的預氧化處理試驗發現:有近一半種類的廢水可生化性降低了;另一半種類的廢水可生化性提高。將該問題減化:有機物經氧化后的中間產物,是更容易降解、毒性更小了,還是反之。當然,這與何種有機物、使用何種氧化劑、氧化環境強弱都有關系。
在給水中,經常采用臭氧預氧化改善有機物的去除效果,形成臭氧-生物活性炭工藝,經臭氧氧化后有機物可生化性是提高的。因為水源水中有機物主要是腐殖酸,其特點為分子量特別大,結構復雜,但沒有一個特征官能團決定有機物的主要化學性質(例如硝基苯,硝基決定其化學和生化性質)。這種情況下,氧化就象一把刀,將有機物切切小,有利于生物降解。類似的,在廢水處理中我們發現:印染廢水中PVA(分子式(C2H4O)n),經水解酸化處理后可生化性提高,且分子量越小,后續好氧處理可生化性越好。盡管如此,流行在學生中一句人云亦云的話沒有太大意義:“大分子有機物轉化為小分子有機物,可生化性提高”。因為一般情況下,只有同類有機物,分子量越小,可生化性越好;而不同類的有機物,并不存在明顯的關系。譬如:可溶性淀粉,分子量不小;硝基苯,分子量不大。前者易于生物降解,而后者生物難降解,毒性很大。
有機物經氧化、而非徹底氧化后,往往有機分子中O元素比例增加,若是生成醇和有機酸,自然可生化性改善;但對于一些難降解廢水,有機污染物分子多含有芳香環和雜環,當廢水的氧化環境不強,往往分子結構中的支鏈被氧化,若胺基(-NH2)被氧化成硝基(-NO2)、氫(-H)和烷基(-CH2-)被氧化成醚基(=O),可生化性大大降低、生物毒性增加。所以一般情況下,化學制藥廢水、染料化工廢水不宜采用氧化法作為預處理。
目前,在工業廢水處理工程實踐中, 很嚴重的問題是處理單元亂排。我曾看到很多化工園區廢水處理廠,將不完全芬頓法(H2O2投加量低、pH高)作為預處理,這將導致廢水的毒性更大。類似的錯誤還有:將鐵碳法、水解酸化法,放在好氧生物處理單元的后面;廢水沒有除磷問題,仍然采用A2/O工藝。氣得我真想問:處理單元是糖葫蘆?都一樣吃!
現在回到核心問題:經催化臭氧氧化,深度處理工業廢水后,可生化性是否提高?
答案是肯定的,且效果較為顯著。理論上嘗試解釋:從有機物分子結構上:生化出水中殘余的有機物,反應較為惰性,很少存在著易于氧化的官能團,若殘余有機物被氧化,可以把惰性有機物分子結構改變。從高級氧化與生物氧化規律差異方面:高級氧化,相對而言對小分子的醛、有機酸較難氧化;而生物處理,小分子的有機酸、醇則是微生物 很好的有機基質。
我們曾經做過某工業園區廢水經高級氧化深度處理后,再次生物反硝化,因為深度處理后廢水中總氮很高,且主要由硝態氮組成。由于碳源不足,總氮去除率很低;但卻發現:廢水COD去除顯著(見下圖)。由此我們提出概念:生化出水經高級氧化深度處理后,可再次進行生化,以進一步提高有機物去除率,送它名稱——“二次生化”。
芬頓法處理后,殘余有機物的可生化性同樣改善,但廢水中增加了約500ppm在硫酸鹽,不利于“二次生化”。
文本轉自:馬魯銘 鐵基催化劑催化臭氧
標簽:
高級氧化(4)可生化性(1)
相關文章(zhang):
臭氧高級氧化去除廢水中BTEX實驗材料與方法2020-09-01
臭氧氧化后可提高含林可霉素廢水的可生化性2020-02-07
用臭氧高級氧化處理金剛烷胺制藥廢水2019-08-18
高級氧化臭氧過氧化物工藝2018-11-07
如何制作高濃度臭氧水2023-10-30
O3/UV和O3/H2O2深度氧化工藝降解1,4-二氧六環的可行性評價2023-10-17
臭氧反應器壓力大小影響臭氧濃度嗎2023-09-26
去除水中鐵錳需要投加多少臭氧呢2023-09-19
氣泡擴散器如何提高水中臭氧利用率2023-09-11
中型腔室測試臭氧暴露對植物影響的裝置2023-09-05
如何校正壓力流量讀數2023-08-27
臭氧可以處理哪些水質和污染物呢?2023-08-16
文丘里射流器如何防止水倒流2023-08-05
水中臭氧的測定方法2023-07-31
DPD 方法介紹2023-07-24
焦化廢水尾水臭氧催化氧化實驗2023-07-15
文丘里射流器與曝氣盤曝氣優缺點2023-07-10
臭氧在水處理中有哪些應用2023-07-01
靛藍分光光度法測水中臭氧濃度2023-06-26